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ABSTRACT 

The use of differential scanning calorimetry to measure thermal conductivity is discussed. 
A theory of the experiment is derived in which a first-order correction is made for lateral heat 
loss from the sample. The conventional approach in which this correction is ignored gives 

results with an accuracy of about 5%. 

INTRODUCTION 

The use of differential scanning calorimetry (DSC) to measure thermal 
conductivity has been described by a number of authors [l-5]. The emphasis 
is on a rapid and straightforward method which might be expected to have 
wide applicability. The technique most commonly used is to measure the 
thermal power needed to maintain a known temperature difference across 
the end-faces of cylindrical samples. However, implicit in the treatment of 
the experimental results has been the assumptions. that both lateral heat loss 
from the surface of the cylinders and thermal impedance at the end-faces 
may be ignored. The purpose of the present work is to examine these 
assumptions. We set out a theory of the experiment and describe the extent 
to which it represents the results obtained using power-compensated DSC 
(Pet-kin-Elmer, Model lb). 

THEORY OF THE EXPERIMENT 

The configuration of a single cylindrical sample is shown in Fig. 1. The 
temperatures T, and Tr refer to the lower and upper faces of the cylinder in 
contact with surfaces at T,, and T, respectively. T, is the ambient tempera- 
ture. The equations describing the heat balance in the steady state are 

d*U 
- + EU = 0, along the cylinder, 0 < x < 1 
dx* 

(1) 
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kg + H{ U, - U(O)} = 0, lower end, x = 0, U(O) = U(x = 0) (2) 

kg + H{ U(I) - U,} = 0, upper end, x = 1, U(Z) = U(x = 1) (3) 

The symbol K denotes the thermal conductivity, E and H are the lateral heat 
transfer term and the end-face heat transfer coefficient, respectively, and U 
is the temperature excess over the ambient value, i.e. U= T - T,. It is 
presumed that E is small and the temperature is constant over any cross-sec- 
tion. 

A solution to these equations may be found using a perturbation method 
in which we look for a temperature field U(x) in the form U(x) = U, + cU, 
+r2u2+ . . . The first perturbation equations 

d2U, 
- = 
dx2 

0 

K~+H{&- u,(o)} =o’ 

K~+H{U,(+U~}=O 

(4 

lead to a description of the temperature field in the absence of lateral heat 
loss. The solution of (4) is U, = Ax + B where A and B are constants such 
that KA=H{U,,-B}=O and KA+H{AI+B-U,}=O. Thus we find 
A = -(U, - U,)/I(l + 2X) and B = U, - A(U, - U,)/(l + 2X) where A = 
K/H/. 

The second perturbation equations lead to a first-order correction for 
lateral heat loss. We have 

d2U, 
-+u,=o 
dx2 

Ks+H{-U,(O)} =0 

K$+H{U#)} =0 

(5) 

from which U, = - iAx - :Bx2 + Cx + D. The constants C and D are 
related to A and B by the expressions D = KC/H and (1 + 2X)/- ‘C = (iAl + 
:B) + X(:Al+ B). 

We are now in a position to calculate the thermal power W at the lower 
face of the cylinder. The first-order temperature field is U = U, + E& and 
hence 

W=KS -%! 
[ 1 dx x=o 

= -KS@ +d) (6) 
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Fig. 1. Configuration of a single cylindrical sample. 

where S is the cross-sectional area of the cylinder. Thus we find 

w 1 
-z- 

KSAU 1 
(7) 

where AU = U,, - UC = T,, - T,, I, = ~K/H, L2 = (cX)-’ and X= 

( U,/2 AU) - i. Equation (7) may be written in the form 

W/KS AU( 1-l - &,I-= + ile) - &U, (8) 

We observe that when I,, = 0 and c = 0 the equation simplifies to W = 
KSAUI-’ the elementary formula used to calculate K without corrections. 

RESULTS 

Our measurements have been made on cylinders machined from perspex. 
The length of the cylinders was 6.01, 8.00, 10.00, 12.00 and 14.00 mm and 
the diameter 4.00 mm. The thermal conductivity of the perspex was known 
from precision-guarded, hot plate measurements made by the National 
Physical Laboratories. The long axis of the cylinders corresponded to the 
direction of heat flow in the hot plate experiments. Two cylinders iYere used 
in each measurement. Since the thermal conductivity and cross-sectional 
area are the same for both cylinders the differential thermal power AW = W, 
- WI is given by 

AW/KS = AU{ A(,-‘) - l,A(l-=) + ;E Al} - :~u,Al (9) 

where Al = 1, - I, is the difference in length of the two cylinders. Other 
experimental configurations have been adopted by some authors: a single 
cylinder and an empty reference holder; two cylinders of different thermal 
conductivity. However, it is important to recognise that the use of two 
cylinders does not eliminate the need for corrections. 



Fig. 2. Thermal conductivity apparatus. 

The experimental arrangement is shown in Fig. 2. The cylindrical samples 
(A) are supported on silver discs which are a close fit in the specimen 
holders of the scanning calorimeter. The heat sink (B) and jacket (C) are also 
made of silver and are separated by a tufnol insulating disc. The silver rods 
(D) are a sliding fit in the heat sink and make contact with the top face of 
the samples. The temperature of the end faces of the rods was measured by 
thermocouples set in thermally conductive paste. A thermocouple (E) was 
used to measure the temperature of the jacket. The differential and average 
temperature calibrations of the calorimeter were established using gallium 
and indium with the thermal conductivity apparatus in position. Linearity 
between the instrument signal and thermal power was confirmed with 
sapphire discs. 

We found it difficult to obtain consistent results when the measurements 
involved removing or replacing the sample cylinders in the apparatus. This 
was in spite of using thermally conductive paste on the end-face of the 
cylinders. The reference signal was obtained with either no cylinders in the 
apparatus or two cylinders of equal length. By rejecting the obviously 
erroneous results we used the elementary formula AJV = KS AU A(l-‘) to 
obtain K = 0.182 f 0.015 W m-l K-‘. This result represents the mean from 
ten independent measurements. The certificated value at the mean tempera- 
ture of the measurements (300 K) was 0.191 W m-l K-’ with an accuracy 
considered better than + 3%. The reproducibility of the hot plate measure- 
ments was better than 0.5%. The discrepancy between our result and the 
calibrated value was - 5% compared with the experimental error of - 8%. 



349 

300 310 320 330 3LO 350 
T,,/K 

Fig. 3. Calorimetric signal as a function of the temperature Th, 

An alternative approach is to measure AIV as a function of the tempera- 
ture of the calorimeter, Th. The advantage of this approach is that a 
knowledge of the reference signal is not needed. Figure 3 shows the results 
of one such experiment in which the temperature of the heat sink and jacket 
was maintained at 290 K. We emphasise that the linear relationship ob- 
served between the calorimetric signal and T,, does not imply the absence of 
lateral heat loss and thermal impedence at the end-faces of the samples. 
Thus from (9) we obtain 

G h = !$ = KS{ A(Z-‘) - 1, A(/-‘) - fe AZ} (T,, T, constant) (10) 
h 

which is consistent with the linear relationship provided that any tempera- 
ture dependence of E and I, is small. The effect of changing T, and T, may 
be examined with the present apparatus which has been designed to allow 
the temperature of the heat sink and jacket to be varied independently. Both 
the heat sink and jacket are wound separately with electrical heaters and 
machined with channels through which water may be passed. Once again we 
observe a linear dependence of A?4’ both on T, and T, with the magnitude 
of the gradient a AW/aT, differing from that obtained from Cl AW/aT,,. 
These observations are inexplicable in terms of the elementary theory but 
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from (9) we have 

G,= -%$ =r~S{A(1-~)-1,, A(r-‘)+ &Al} (7’,, T,constant) (11) 
C 

and 

GcaAw 
a - =KS{& Al} 

aTt 
( Th, T, constant) (12) 

The gradients G, and G, provide a route to the absolute calculation of the 
thermal conductivity. Thus from (10) and (11) we derive 

+(Gi, + 2G,),‘A(l-‘) = KS - KS&&1 + I;‘) (13) 

i.e. we predict that y = :(G, + 2G,)/A( I-‘) is linear in x = 1,’ + 1,’ with 
an intercept KS. Such an approach is neither rapid nor straightforward and 
the reliability of our results was diminished by the accumulated errors in the 
gradients and temperature dependences of the reference signal. The use of 
more precise calorimetric equipment may allow the approach to be adopted 
leading to an improvement in the accuracy of the results. The present work 
suggests that the effect of the corrections is likely to be small ( < 5%). It may 
be that the cylinder lengths used in these measurements fortuitously repre- 
sent a compromise in which the relative effect of thermal impedance at the 
end-faces is small without unduly increasing the effect of lateral heat loss. 
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